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i. Research Problem. The resistance of shock-compressed metals to shape change below 
the fusion line is described in [i-3] by alternative models for a relaxation [4, 5] or elasto- 
plastic [3] medium. As mathematical modeling shows [i-7], for high velocity impact of a 
plate and reaction of shock waves (SW) with unloading waves, the results of experiments [3, 
8-10] are adequately described in representations of Maxwellian relaxation and to the same 
extent by equations for a strengthening elastoplastic body taking account [3] of the Bau- 
schinger effect blurring the unloading wave front. 

The aim of the present work is determination on the basis of unambiguous experimental 
information of steady-state SW propagation for different shock-wave deformation conditions 
for aluminum and beryllium. The steady-state SW configurations reflect the main rheological 
parameters of the propagation medium, i.e., its effective viscosity, shear stress relaxation 
time, and dislocation characteristics. Recording of these values with different SW amplitudes 
is one of the main sources of information necessary for, constructing adequate fundamental 
equations (FE). With the accuracy required for this purpose, structures of the front have 
been recorded in aluminum [ii] in the pressure range of 9 GPa, and in beryllium up to 25 GPa 
[12]. Limited information with upper estimates of front width have been obtained in [13] 
for some metals up to i00 GPa. Master data for deformation rates in the SW front have been 
obtained in a series of metals in [14]. 

2. Fundamental Equations and Dislocation Models. Metals and other crystalline bodies 
belong to materials with a "decaying memory." The magnitude of tangential stresses for them 
is a function of yield strength and relative rate of competing processes of shear deformation 
and plastic relaxation. 

For planar flows the FE in the majority of studies overseas are written in the form of 
Malvern-Duval [15] 

4 ' 8 "p (2.1) 

The most convenient for representing the relaxation function by dislocation relationships. 
common phenomenological FE is the equation for a generalized Maxwellian liquid [4] 

4 8 ( 2 . 2 )  = - ~ e  tp(s---'7" 
In (2.1) and (2.2) derivatives with respect to time for deviators S = (4/3)x (z is tan- 

gential stress), total unidimensional strain e = in (9/90) (9o and 9 are initial and current 
density), and plastic shear deformation 7P are labeled with periods. In both equations there 
is shear modulus U, and in (2.2) there is relaxation function tp(S) = (2 in S/St) e character- 
izing relaxation rate for viscous stresses with fixed strains. 

For substances with pronounced critical shear stress ~* with S ~ S* = 4~*/3 

8~ S* 
tp (8) 

viscosity of the medium 

(2.3) 4 �9 =-f~e 

On the basis of (2.1) and (2.3) effective 

= 2~ (2.4) 

Equation (2.3) contains plastic S*, elastic ~, and relaxation tp characteristics for the 
medium, and with variables tp(S) and S*(~P) it represents the most common model of deforma- 
tion. In a special case with constants tp and S*, Eq. (2.3) relates to an ideal relaxing 
elastoplastic body, and with S* = 0 it relates to an ideal Maxwellian liquid. 
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For quasisteady shape change regimes, if 8 in$/~t ~ t~ I, neglecting ~, which is per- 
missible under these conditions, converts (2.3) into a FE for a plastically viscous body 

4 ~ t ~ e = S  + ~ e  ( 2 . 5 )  S = S* +--~- 

with variable viscosity coefficient ~ ( p ) .  

For "slow ~'' processes with ~tpe ~ S ~, (2.3) and (2.5) "degenerate" into a FE for a 
strengthening elastoplastic medium 

S = S* = (~3)z*,  z = T(?P, T~ p) ( 2 . 6 )  

with critical tangential stress ~ which is a function of plastic deformation ~P, temperature 
T, and pressure p. 

In crystalline bodies the predominant mechanism for deformation is a dislocation mecha- 
nism with a rate of plastic relaxation 

~P = bNmv ~ ( 2 . 7 )  

proportional to the density N m of mobile dislocations, their average velocity v, and Burgers 
vector b; ~P enters explicitly into the Malvern-Duval FE (2.1). In schematic description 
[16] relationship v(z) for dislocation velocity includes critical stress at the start of flow 
z*, tangential stress range required for moving dislocations in a field of fine scale bar- 
riers, and the section of viscous movement over barriers with an upper relativistic limit 
equal to transverse sound velocity v s . For many materials the significant initial region of 
the v(z) curve with T > T* is satisfactorily described by a linear equation 

v = b ~ / B ,  ~ = z - -  ~*,: 

where B is viscous retardation coefficient; ~v is tangential stress viscous component. Re- 
laxation rate (2.7) in the linear range 

~P = (Nmbi/B)%. ( 2 . 8 )  

w h e n c e  

~o = B/(b2Nm), tpo --  B/(2~b~Nm). ( 2 . 9 )  

For more complex relationships v(~) taking account of the relativistic limitation of 
dislocation velocity by transverse sound velocity Vs, it is convenient to introduce accord- 
ing to [17] dimensionless velocity v = v/v s and stress z = T/T0 relating to a unit of dislo- 
cation scale for tangential stresses 

% = vsB/2b. ( 2 . 1 0 )  

In these variables according to [17] 

= [(1 + z 2 ) t l  2 - -  l ] l z .  (2.11) 

Correspondingly 

~ o  = tp/tpo = (1/2)z2[(1 + z~)l/2 - -  i ] .  ( 2 . 1 2 )  

For another class of materials with ~ close to z*, dislocation velocity is controlled 
by the resistance of small-scale barriers which affect their movement. Depression of veloci- 
ties with small z is described here by an equation close in structure to that in [ii] 

= z~(l  + z~) -~  ( 2 . 1 3 )  

and by relationships 

n~o  = tp/tpo = ( t /2)~ = + t )~ .  ( 2 . 1 4 )  

For materials ,with these properties there is no separating boundary in shear stress values 
dividing elastic from viscoplastic behavior. 

The main factor controlling the intensity of relaxation processes is in (2.7) the num- 
ber of mobile ,dislocations N m = fN comprising the proportion f of their total density N; N m 
is determined by competing processes of dislocation multiplication and their mutual blocking. 
In the simplest assumptions [11, 18] f = const and N m = N0m = M~ p. In hypotheses [19-21] 
for describing anomalously rapid fading of elastic precursors, apart from multiplication 
there is introduction of heterogeneous generation of dislocations in a tangential stress field 
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at crystalline lattice defects. In [21], where both of these processes are summed, N m = 
N0m + My p + (~ - T*)/q. The relative role of different factors affecting the increase in 
mobile dislocation density under wave deformation conditions is not yet clear since specific 
mechanisms for their formation have not been revealed. However, it is well known that about 
I0% of plastic deformation energy W p is conserved in the form of elastic energy of point and 
linear defects. Therefore it is natural that dislocation density is represented only by 
function W p, e.g., in the form 

~ = ~0~ + ~ (wPl4) ~ (2.15) 

Here a 0 is volumetric sound velocity under normal conditions; derivative wP = 2SyP/p. 

The structure of Eq. (2.15) reflects the tendency towards an increase in mobile disloca- 
tion density, and with n < 1 to retardation of this process as a result of dislocation block- 
ing. Coefficient ~ and index n in (2.15) are free parameters of the FE determined from ex- 
perimental data. 

3. Steady-State SW Profiles. For media with linear D(u)-equations of the Hugoniot 
adiabat [22] [D(u) is SW velocity; u is mass velocity] relaxation relationships for the SW 
front and mathematical models of the front are particularly simple and convenient for inter- 
preting the shape from an experiment using the analytical shape of deviators suggested in 
[23]. 

The structure of the front in relaxing media applied to gases with flow excitation of 
degrees of freedom was first considered in [24] and applied to solids in [25-30] devoted to 
the question of mathematical theory in [25-27] for SW in media with linear relaxation (tp = 
const) [28], a generalized Maxwellian liquid with variable viscosity [29], and a dislocation 
model for a wave of small anharmonicity [30]. Two classes of solution were detected: with 
a continuous profile for weak SW with propagation rate D less than longitudinal sound velocity 
CL0, and a solution with an internal break for a strong wave outstripping the elastic pre- 
cursor. The sequence of the states of shock discontinuities form Rayleigh-Michaelson 
straight lines R in p-v-diagrams. For weak waves the wave rays commence a pole 1 (Fig. i) 
on adiabat I at the elastic precursor amplitude, and they finish on plastic adiabat p+ sepa- 
rated from equilibrium adiabat L by deviator S* = 4~*/3. For waves of the prescribed ampli- 
tude the hatched segment isolates the relaxing part of deviators ~ = S - S* included between 
wave straight line R and the shock adiabat. 

If S* = const and shock compressibility for a metal is described by a linear relation- 
ship D(u) = a 0 + alu, according to [23] 

~" 2pla,(u--ul)(uz  - -  ul),  ( 3 . 1 )  

where u is variable mass velocity at the wave front; u 2 is final velocity of Hugoniot condi- 
tion 2; u I and Pl are mass velocity and density of the elastic precursor. At a central point 
of the profile with u = (u I + u2)/2, d~/du ffi 0 and maximum deviator 

~1/, ~" (tl2)plal(u~ - -  ul) ~. ( 3 . 2 )  

Expressions (3.1) and (3.2) are approximate, but their difference from accurate relation- 
ships for the whole range of weak waves does not exceed several percent. 

Differential equation of the profile d~ (.~ D d=~tP(=) represents fundamental Eq. ~--J=--.__~-- -~'u/ ~ " 

(2.3) for a wave variable ~ = x - Dt (x is coordinate, t is time), obtained by the substitu- 

tions S--S*=~, S ~ n d= di �9 du = --~-~u-d[' e=--~ and its equivalent shape will be 

d~ =_ t [1 (3.3) __ _ 3 ~  d~ 
d~ 2~p ~ 4 ~ d~J" 

A changeover to dimensionless velocity 9 = (u - ul)/(u 2 - u I) and substitution of ~ from 
(3.1) leads to (3.3) to the form 

t d~ a - - ~ + 2 ~ t  ~ ( 3 . 4 )  

with a value 

2 ~ ( 3 . 5 )  
= T a, (p~-  Pl)" 
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For a wave of different amplitude parameters ~ with increasing D from a 0 to the initial longi- 
tudinal sound velocity CL0 change from ~ to -i. 

Experimental recording of steady-state~profiles determines the relaxation parameters 
for the averaged level of the front. With u = 1/2 the tangent at this point by intersecting 
with the horizontals u = 0 and I fixes in Euler coordinates the effective width of the front 

A: = (d~/d~')i/~. = 4=D(tp)i/2. (3 ,6 )  

Experimentally measured A t for Lagrangian generators on the basis of (3.5) and (3.6) 
determines local relaxation time 

and local viscosity 

( tP)l l  2 : 3al P~ P2 -- P: At ( 3 . 7 )  
8 P2 ~ti/2 

I]it 2 3al  Pl (pa __ Pl) A~- = T T f  (3.8) 

Correspondingly the local plastic deformation velocity is 

fi;P)i/  = 1 ul ( 3 . 9 )  
2 DA~ p:" 

This last relationship makes it possible with a selected relationship v(T) to find from (2,7) 
the density of mobile dislocations N m. 

The model of an ideal relaxing medium is realized with tp = const and e = const. Under 
these assumptions after integrating (3.3) as in [30], 

= In [4(I --~)=+i~*-=], ~= ~l(Otp). (3. I0) 

For very weak wave with ~ >> 1 

= (I/2) [i -- th (~/2=) ]. (3. i i) 

Equation (3.1:[) describes the structure of a steady-state front in a viscous Newtonian liquid. 
In another limiting case at the upper boundary of the region of weak waves with a = 1 

"u ---- { --  (t/2) exp (~/2). ( 3 . 1 2 )  

According to (3.12) in the wave movement direction the front has a finite size ~(0) = 
2 in2. A typical configuration for steady-state profiles in an "ideal" medium for different 
a is shown in Fig. 2. Solutions (3.10)-(3.12) obtained in simplified ideas about the propa- 
gating medium are attractive in their simplicity and useful for qualitative interpretation 
of an experiment. 

In another more realistic model of the medium suggested in [14] deformation velocity 

= ( 3 . 1 3 )  

is connected with the active part tangential stresses ~v by a quadratic relationship leading 
to a variable relaxation time tp = (2uA'Tv) -I. 

At a central point of the profile 

(tp),/~ = (4./3) [l~1'a,p~(% - -  %)9.1- ! ( 3 . 1 4 )  

and in other conditions at the front 

913 



TABLE I 

Metal 

A1 

Be 

v. ] a*' km/tsec a, CLo, km/t's, k m / l s e c  sec b, nm I B, Pa.see I x'' GPa 

2 , 1 4 1 5 , 3 3 3 1 t , 3 5 6 1 6 , 5 2 1 3 , 2 6 1 0 , 2 8 6 1 5 , 7 1 0 , 3 2 4  

TABLE 2 

km/ sec 

0, t t t  
0,2t3 
0,5i 

0,333 
0,61 
0,92 
t,37 

GPa mec 

(tp) t/2, 
I1SeC 

~t/2, [ (~P)i/2, 
Pa-scc _ l/sec 

"65 I 0'023 I 3,25 0,087 
8,35 0,49 

5,tl 0,t2 
9,84 0,89 

t5,43 0,89 
24,27 t,98 

32 

t60 
t74 
t84 
200 

A1 

250 I 6'6 ] 4 2 0 6  31 t,5 t00 0,6 50 
Be 

30 0,41 ] 130 
22 0,53 } t85 
t i  0,39 t50 

0,18 70 

T 

4.10 ~ 19 
6.105 25 

6,6- I0~ 40 

1,6. I0 e 
4,6.10 s 

7.10 e 
2. I07 

3,8 
4,5 
5,5 
7 

= - f)]-1. (3.15) 

Differential Eq. (3.4) after substituting tp from (3.15) is transformed into a new equation 

- ~  = 4~ 2 (1 --~)~ (tP)ll~ ( 3 . 1 6 )  

w h e r e  ( t p ) z / 2  i s  c o n s t a n t  f o r  a l l  o f  t h e  f r o n t  c o n d i t i o n s ,  b u t  i n  c o n t r a s t  t o  an  i d e a l  r e l a x -  
i n g  medium it decreases according to (3.14) inversely proportional to the plastic wave ampli- 
tude. Equation (3.16) is integrated, as a result of which 

= 4 § ) �9 ( 3 . 1 7 )  

4. Fundamental Equations for Aluminum and Beryllium. For aluminum experimental SW 
profiles [ii], recorded at normal pressures of 9, 3.7, and 2.1 GPa, are reproduced in u-t- 
variables in Fig. 3 by curves 1-3, respectively. Similar front contours 1-4 for beryllium 
[12] in Fig. 4 relate approximately to SW amplitudes 6, I0, 17, and 25 GPa. The zero levels 
of reckoning plastic waves, coinciding with the plastic precursor amplitudes, are noted by 
broken lines. For aluminum 

ul = 0.023km~ec,  Px = 0.~IGPa, S1 = S * = 0.133 GPa; ( 4 . 1 )  

and for beryllium 

u I : ~054km~r  Pl = t . 3 t G P a , S 1  = S* = 0.83GPa. (4.2) 

Given in Table i are the rest of the characteristics for aluminum and beryllium in the 
original condition required for further analysis [Grfineisen coefficients ~0, coefficients 
a 0, a~, D(u)-relationships, and CLo, Vs, b, B, To], and Table 2 are parameters for the steady- 
state shock waves being studied: amplitudes u 2 - u I for plastic waves measured from their 
graphs, calculated from pressures P2 - Pl = PzD(u2 - Ul), D = a 0 + az(u 2 - uz), maximum de- 
viators ~i/2 from (3.2) and experimental time intervals at, characteristics relating to the 
central point of the profile, i.e., ~x/2 from data in [31, 32] for aluminum, and [33, 34] 
for beryllium, and calculated from values of A t in Eqs. (3.7)-(3.9), (tp)i/2, ~i/2, and 
(~P)1/2" 

As the results of analysis show, with an increase in amplitude and SW deviators velocity 
~P for aluminum increases by approximately two orders of magnitude, and for beryllium by a 
factor of thirty. 

There is also a marked reduction in front dimension A t. Viscosity decreases to several 
tens of pascal-seconds and relaxation time to fractions of a nanosecond. The dependences 
obtained ~i/2 - ~/2 are shown graphically in Fig. 5. For aluminum (curve 3) in accordance 
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with [14] the relaxation rate is approximately proportional to ~i/2, and for beryllium (curve 
2) to ~~s/2. Lines i and 4 are results from [14] for iron and copper, given here under our 

treatment. 

Dislocation models and FE are found from data in Table 2 and experimental plastic wave 
profiles. For aluminum the optimum description of the whole experiment is achieved with sub- 
stitution in (12.7) of Eq. (2.13) for dislocation velocity and for dislocation density, re- 
spectively, 

Nm (A1). ~0 -s cm -= = ~0 -2 + 410 (WP/a~) ~ 
( 4 . 3 )  

For beryllium optimum equations are (2.11) and 

Nm (Be). J0-Scm -2 = 10 -2 + 43,5 (WP/a~) ~ ( 4 . 4  ) 

"Dislocation" profiles (shown by points, correspondingly, in Figs. 3 and 4) calculated 
by Eqs. (2.131), (4.3), (2.11), (4.4) using parameters in Table 2 agree satisfactorily with 
experimental curves. Nanosecond relaxation times and low viscosity are caused by the con- 
siderable mobiie dislocation density formed during shock compression. For a metal behind 
the SW front values of N m are calculated by Eqs. (4.3) and (4.4). 

For alum:inum everywhere N m > 2"10 9 cm -2. For beryllium N m is greater than 4"108 cm -2. 
On the basis of the FE obtained plastic deformation rate behind the SW front is connected 
with viscous :stresses by the relationships 

7P(A1) = Nmb=vJ=(l Jr- z~)-l; ( 4 . 5 )  

~P(Be) = Nmb~v8 [(t q- z2)1/2 - -  t ]z- 1. ( 4 . 6 )  

N u m e r i c a l l y  w i t h  N m ( s e e  T a b l e  2)  and  z < 0 . 5  

y$ 

Nmb 2 
~P(Be) = ~ ' r ~  lO~-r,. ( 4 . 8 )  

In unloading 'waves and repeated compression with deformation velocity ~106 sec -l viscous 
components of tangential stresses in beryllium and aluminum estimated by (4.7) and (4.8) do 
not exceed 0.i GPa. 

Rheological parameters for SW of equal amplitude relate to different structural states 
of the metal. Combination of them [14] in universal relationships of the form ~P = A'T~ do 
not have a strict basis, nonetheless experimental data placed in Eq. (3.13) relating to 
average shock pressure levels, according to the determination provide a correct description 
of front curvature and the known extent of profile configuration. As an illustration shown 
in Fig. 6 are dimensionless 5(t)-profiles for an SW in aluminum for 2.1GPa and in Fig. 7 
in beryllium for 0.6 GPa. Curves were calculated by Eq. (3.17) and values of (tD)I/2 in 
Table 2; points are experimental data [ii, 12]. The model of (3.13) suggested in [i4] 
markedly reduces relaxation rate. 

5. Discussion. The equations obtained determine the resistance of aluminum and beryl- 
lium to shear over wide ranges of deformation rate and for different levels of defects in 
their structure, i.e., with the existence of different dislocation densities. For the dis- 
location structure formed in the metal by compressive shock pressures of several gigapascal 
or more, the high dislocation density markedly decreases metal viscosity and the value of 
the ductile components of tangential stresses to small fractions of a gigapascal with shear 
deformation rates ~10 6 sec -l. 
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This conclusion is based on the behavior of metals under the action of high SW front tangential 
stresses. Due to the change in number of mobile dislocations, the applicability of the FE 
constructed to subsequent deformation processes in loading waves and repeated loading is not 
apparent [13]. The role of viscosity and relaxation for a metal saturated with shock-com- 
pressive dislocations is explained independently with the exception of wave pulses of differ- 
ent time scale created with geometric similarity for a different deformation rate. This 
class of experiments relates to the well-known studies for the corrugated front method [35, 
36] where viscosities ~10 ~ Pa.sec were found from the disturbance of similarity in a decaying 
perturbation of different wavelength. These last studies [37] for viscosity of water have 
shown however that in the process of perturbation decay shock reactions play a more complex 
role than simple viscous dissipation. 

In more direct tests the effect of loading rate on the resistance of aluminum appeared 
to be insignificant at shock pressures of 2 GPa [38] and it did not develop at 15 GPa [39]. 
Tests [13] were interpreted in [40] for SW reflection from a free surface. Attention was 
drawn to the difference in unloading velocity of different metal layers, decreasing with their 
distance from the free surface. As calculations have shown, the initial minimum movement 
velocity for the surface increases as signals arrive from deeper layers. The period of non- 
steady movement for a barrier is approximately equal to the relaxation time, and from experi- 
mental data [13] it does not exceed several nanoseconds. In aggregate experiments confirm 
the estimates made above for viscous resistance at high deformation rates. 

In the present study critical deviators S * for the wave front are taken to be constant 
2 1 - - 2 a  

and e q u a l  t o  t h e  e l a s t i c  p r e c u r s o r  d e v i a t o r s  S*=SI-----  3 i - - ~  Pl (a  i s  P o i s s o n ' s  r a t i o ) .  The 

most  d i r e c t  method f o r  d e t e r m i n i n g  t h e  s t r e s s  t e n s o r  beh ind  t h e  wave f r o n t  and c h e c k i n g  t h e  
a s s u m p t i o n s  made i n v o l v e s  s i m u l t a n e o u s  measurement  o f  two p r i n c i p a l  s t r e s s e s ,  i . e . ,  no rma l  
and p a r a l l e l  t o  t h e  wave f r o n t .  The f i r s t  r e c o r d  o f  t h i s  t y p e  was a c c o m p l i s h e d  in  [41]  in  
s t e e l  spec imens  in  two p e r p e n d i c u l a r  e l e c t r o s t a t i c  s e n s o r s .  I n  t h e  r a n g e  9 GPa a c o n s t a n t  
v a l u e  Y ffi 0 .56  GPa was r e c o r d e d .  S i m i l a r  r e s u l t s  ( 0 . 5  GPa) were g i v e n  by s i m i l a r  m e a s u r e -  
ments  in  [42]  by managing  s e n s o r s  in  c o n t r a s t  t o  [43] where by t h e  same p r o c e d u r e  h i g h e r  Y 
were  r e l a t e d  t o  u n r e a l i s t i c  v o l u m e t r i c  c o m p r e s s i o n  c u r v e s .  

For  aluminum and b e r y l l i u m  d e v i a t o r s  b e h i n d  t h e  SW f r o n t  have  been  d e t e r m i n e d  by t h e  
p - v - t r a j e c t o r y  method [44] and an e q u i v a l e n t  " s e l f - c o n f o r m i n g  method"  [ 4 5 ] .  Smal l  d e v i a t o r s  
c l o s e  t o  S l have  been r e c o r d e d  f o r  aluminum up t o  shock  p r e s s u r e s  o f  22 GPa and f o r  b e r y l l i u m  
[46]  up t o  35 GPa. 

The most  p r o b a b l e  r e a s o n  f o r  f o r m i n g  t h e s e  q u a s i s t a t i c  c o n d i t i o n s  b e h i n d  t h e  f r o n t  i s  
s h o r t - t e r m  m e t a l  l o s s  o f  s t r e n g t h  due t o  l o c a l  r e l e a s e  o f  h e a t  a l o n g  s l i p  p l a n e s .  A c c o r d i n g  
t o  e s t i m a t e s  i n  [47]  t h e  t i m e  f o r  t e m p e r a t u r e  l e v e l i n g  and s t r e n g t h  r e c o v e r y  f o r  aluminum i s  
-10 -8 s e c .  F o r m a l l y  t h i s  p r o c e s s  i s  d e s c r i b e d  [40]  by " c o o l i n g "  o f  g e n e r a t e d  " h o t "  d i s l o c a -  
t i o n s  N h whose number v a r i e s  w i t h  v e l o c i t y  N h ffi N m - Nh/T p .  I n  t h e  c h a r a c t e r i s t i c  t ime  f o r  
t h e r m a l  r e l a x a t i o n  Tp t h e  c r i t i c a l  s t r e s s  ~'~ e v o l v e s  f rom an i n i t i a l  v a l u e  ~ t o  an e q u i l i b -  
r lum v a l u e  T~ a c c o r d l n g  t o  a r e l a t l o n s h l p  o f  t h e  form 

[ T1 + 2 ( '~  "q) I + exp .~. 

For aluminum the equilibrium yield strength Y2 = 2~ in the function due to pressure 
from the data of different researchers is given in [41]. An increase in Y2 commences with 
a shock pressure of 8 GPa and with an SW amplitude of 23 GPa it reaches 1.3 GPa. For beryl- 
lium [46] with 35 GPa, Y = 2.5 GPa. 
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As comparison of these values with the magnitude of viscous components shows, as the 
number of mobile dislocations increases the model for a metal relaxing according to its own 
character in quasistatics and with lowSW amplitudes "degenerates" into a model of a strength- 
ening elastoplastic medium whose principal characteristic is an effective yield limit. 
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